九年級數學下冊知識點
課堂臨時報佛腳,不如 課前預習 好。其實任何學科都是壹樣的,學習任何壹門學科,勤奮都是最好的 學習 方法 ,沒有之壹,書山有路勤為徑。下面是我給大家整理的 九年級數學 知識點,希望對大家有所幫助。
九年級下冊數學知識點歸納
圓
★重點★①圓的重要性質;②直線與圓、圓與圓的位置關系;③與圓有關的角的定理;④與圓有關的比例線段定理。
☆內容提要☆
壹、圓的基本性質
1.圓的定義(兩種)
2.有關概念:弦、直徑;弧、等弧、優弧、劣弧、半圓;弦心距;等圓、同圓、同心圓。
3.“三點定圓”定理
4.垂徑定理及其推論
5.“等對等”定理及其推論
6.與圓有關的角:⑴圓心角定義(等對等定理)
⑵圓周角定義(圓周角定理,與圓心角的關系)
⑶弦切角定義(弦切角定理)
二、直線和圓的位置關系
1.切線的性質(重點)
2.切線的判定定理(重點)
3.切線長定理
三、圓換圓的位置關系
1.五種位置關系及判定與性質:(重點:相切)
2.相切(交)兩圓連心線的性質定理
3.兩圓的公切線:⑴定義⑵性質
四、與圓有關的比例線段
1.相交弦定理
2.切割線定理
五、與和正多邊形
1.圓的內接、外切多邊形(三角形、四邊形)
2.三角形的外接圓、內切圓及性質
3.圓的外切四邊形、內接四邊形的性質
4.正多邊形及計算
中心角:初中數學復習提綱
內角的壹半:初中數學復習提綱(右圖)
(解Rt△OAM可求出相關元素,初中數學復習提綱、初中數學復習提綱等)
六、壹組計算公式
1.圓周長公式
2.圓面積公式
3.扇形面積公式
4.弧長公式
5.弓形面積的計算方法
6.圓柱、圓錐的側面展開圖及相關計算
初三下冊數學知識點 總結壹、銳角三角函數
正弦等於對邊比斜邊
余弦等於鄰邊比斜邊
正切等於對邊比鄰邊
余切等於鄰邊比對邊
正割等於斜邊比鄰邊
二、三角函數的計算
冪級數
c0+c1x+c2x2+...+cnxn+...=∑cnxn(n=0..∞)
c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n(n=0..∞)
它們的各項都是正整數冪的冪函數,其中c0,c1,c2,...cn...及a都是常數,這種級數稱為冪級數.
泰勒展開式(冪級數展開法)
f(x)=f(a)+f'(a)/1!.(x-a)+f''(a)/2!.(x-a)2+...f(n)(a)/n!.(x-a)n+...
三、解直角三角形
1.直角三角形兩個銳角互余。
2.直角三角形的三條高交點在壹個頂點上。
3.勾股定理:兩直角邊平方和等於斜邊平方
四、利用三角函數測高
1、解直角三角形的應用
(1)通過解直角三角形能解決實際問題中的很多有關測量問.
如:測不易直接測量的物體的高度、測河寬等,關鍵在於構造出直角三角形,通過測量角的度數和測量邊的長度,計算出所要求的物體的高度或長度.
(2)解直角三角形的壹般過程是:
①將實際問題抽象為數學問題(畫出平面圖形,構造出直角三角形轉化為解直角三角形問題).
②根據題目已知特點選用適當銳角三角函數或邊角關系去解直角三角形,得到數學問題的答案,再轉化得到實際問題的答案.
初三 數學學習方法壹、該記的記,該背的背,不要以為理解了就行
有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說妳只講對了壹半。數學同樣也離不開記憶。試想壹下,小學的加、減、乘、除運算要不是背熟了“乘法九九表”,妳能順利地進行運算嗎?盡管妳理解了乘法是相同加數的和的運算,但妳在做9.9時用九個9去相加得出81就太不合算了。而用“九九八十壹”得出就方便多了。同樣,是運用大家熟記的法則做出來的。同時,數學中還有大量的規定需要記憶,比如規定(a≠0)等等。因此,我覺得數學更像遊戲,它有許多遊戲規則(即數學中的定義、法則、公式、定理等),誰記住了這些遊戲規則,誰就能順利地做遊戲;誰違反了這些遊戲規則,誰就被判錯,罰下。因此,數學的定義、法則、公式、定理等壹定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這裏,我向背不出的同學敲壹敲警鐘,如果背不出這三個公式,將會對今後的學習造成很大的麻煩,因為今後的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。
對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打壹個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨鬥、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以壹定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。
二、幾個重要的數學思想
1、“方程”的思想
數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有壹種等量關系,可以建立壹個相關等式:速度.時間=路程,在這樣的等式中,壹般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程裏的已知量求出未知量的過程就是解方程。我們在小學就已經接觸過簡易方程,而初壹則比較系統地學習解壹元壹次方程,並總結出解壹元壹次方程的五個步驟。如果學會並掌握了這五個步驟,任何壹個壹元壹次方程都能順利地解出來。初二、初三我們還將學習解壹元二次方程、二元二次方程組、簡單的三角方程;到了高中我們還將學習指數方程、對數方程、線性方程組、、參數方程、極坐標方程等。解這些方程的思維幾乎壹致,都是通過壹定的方法將它們轉化成壹元壹次方程或壹元二次方程的形式,然後用大家熟悉的解壹元壹次方程的五個步驟或者解壹元二次方程的求根公式加以解決。物理中的能量守恒,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們壹定要將解壹元壹次方程和解壹元二次方程學好,進而學好 其它 形式的方程。
所謂的“方程”思想就是對於數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善於用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。
2、“數形結合”的思想
大千世界,“數”與“形”無處不在。任何事物,剝去它的質的方面,只剩下形狀和大小這兩個屬性,就交給數學去研究了。初中數學的兩個分支棗-代數和幾何,代數是研究“數”的,幾何是研究“形”的。但是,研究代數要借助“形”,研究幾何要借助“數”,“數形結合”是壹種趨勢,越學下去,“數”與“形”越密不可分,到了高中,就出現了專門用代數方法去研究幾何問題的壹門課,叫做“解析幾何”。在初三,建立平面直角坐標系後,研究函數的問題就離不開圖象了。往往借助圖象能使問題明朗化,比較容易找到問題的關鍵所在,從而解決問題。在今後的數學學習中,要重視“數形結合”的 思維訓練 ,任何壹道題,只要與“形”沾得上壹點邊,就應該根據題意畫出草圖來分析壹番,這樣做,不但直觀,而且全面,整體性強,容易找出切入點,對解題大有益處。嘗到甜頭的人慢慢會養成壹種“數形結合”的好習慣。
九年級數學下冊知識點相關 文章 :
★ 九年級數學下冊圓的知識點整理
★ 人教版九年級數學知識點歸納
★ 最新初三數學知識點總結大全
★ 初三數學知識點考點歸納總結
★ 初三數學知識點歸納總結
★ 初中初三數學知識點
★ 初三數學知識點歸納人教版
★ 九年級下學期期末數學復習資料
★ 初中九年級數學知識點總結歸納
★ 初三數學基礎知識點總結
var _hmt = _hmt || []; (function() { var hm = document.createElement("script"); hm.src = "/hm.js?3b57837d30f874be5607a657c671896b"; var s = document.getElementsByTagName("script")[0]; s.parentNode.insertBefore(hm, s); })();