歐拉線的定義
萊昂哈德·歐拉於1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的重心在歐拉線上,即三角形的重心、垂心和外心***線,而且重心到外心的距離是重心到垂心距離的壹半。
如右圖,歐拉線(圖中的紅線)是指過三角形的垂心(藍)、外心(綠)、重心(黃)和歐拉圓圓心(紅點)的壹條直線。
註:三角形三邊的中點,三高的垂足和三個歐拉點(連結三角形各頂點與垂心所得三線段的中點)九點***圓,稱為歐拉圓。
萊昂哈德·歐拉於1765年在他的著作《三角形的幾何學》中首次提出定理:三角形的重心在歐拉線上,即三角形的重心、垂心和外心***線,而且重心到外心的距離是重心到垂心距離的壹半。
如右圖,歐拉線(圖中的紅線)是指過三角形的垂心(藍)、外心(綠)、重心(黃)和歐拉圓圓心(紅點)的壹條直線。
註:三角形三邊的中點,三高的垂足和三個歐拉點(連結三角形各頂點與垂心所得三線段的中點)九點***圓,稱為歐拉圓。