当前位置 - 股票行情交易網 - 股票交易 - 三階魔方有多少種情況(或組合),怎麽算的,請真正理解的人解釋,怎麽算,

三階魔方有多少種情況(或組合),怎麽算的,請真正理解的人解釋,怎麽算,

8!×37×12!×211/2 = 43252003274489856000

具體的計算是這樣的: 在組成魔方的小立方體中, 有 8 個是頂點, 它們之間有 8! 種置換; 這些頂點每個有 3 種顏色, 在朝向上有 37 種組合 (由於結構所限, 魔方的頂點只有 7 個能有獨立朝向)。 類似的, 魔方有 12 個小立方體是邊, 它們之間有 12!/2 種置換 (之所以除以 2, 是因為魔方的頂點壹旦確定, 邊的置換就只有壹半是可能的); 這些邊每個有兩種顏色, 在朝向上有 211 種組合 (由於結構所限, 魔方的邊只有 11 個能有獨立朝向)。 因此, 魔方的顏色組合總數為 8!×37×12!×211/2 = 43252003274489856000, 即大約 4325 億億。 另外值得壹提的是, 倘若我們允許將魔方拆掉重組, 則前面提到的結構限定將不復存在, 它的顏色組合數將多達 51900 億億種。 不過組合數的增加並不意味著復原的難度變大, 魔方結構對組合數的限制實際上正是使魔方的復原變得困難的主要原因。 舉個例子來說, 二十六個英文字母在相鄰字母的交換之下***有約 400 億億億種組合, 遠遠多於魔方顏色的組合數, 但通過相鄰字母的交換將隨意排列的二十六個英文字母復原成從 A 到 Z 的初始排列卻非常簡單。