磁懸浮列車?
“若即若離”,是磁懸浮列車的基本工作狀態。磁懸浮列車利用電磁力抵消地球引力,從而使列車懸浮在軌道上。在運行過程中,車體與軌道處於壹種“若即若離”的狀態,磁懸浮間隙約1厘米,因而有“零高度飛行器”的美譽。它與普通輪軌列車相比,具有低噪音、低能耗、無汙染、安全舒適和高速高效的特點,被認為是壹種具有廣闊前景的新型交通工具。特別是這種中低速磁懸浮列車,由於具有轉彎半徑小、爬坡能力強等優點,特別適合城市軌道交通。
德國和日本是世界上最早開展磁懸浮列車研究的國家,德國開發的磁懸浮列車Transrapid於1989年在埃姆斯蘭試驗線上達到每小時436公裏的速度。日本開發的磁懸浮列車MAGLEV (Magnetically Levitated Trains)於1997年12月在山梨縣的試驗線上創造出每小時550公裏的世界最高紀錄。德國和日本兩國在經過長期反復的論證之後,均認為有可能於下個世紀中葉以前使磁懸浮列車在本國投入運營。
磁懸浮列車運行原理
磁懸浮列車是現代高科技發展的產物。其原理是利用電磁力抵消地球引力,通過直線電機進行牽引,使列車懸浮在軌道上運行(懸浮間隙約1厘米)。其研究和制造涉及自動控制、電力電子技術、直線推進技術、機械設計制造、故障監測與診斷等眾多學科,技術十分復雜,是壹個國家科技實力和工業水平的重要標誌。它與普通輪軌列車相比,具有低噪音、無汙染、安全舒適和高速高效的特點,有著“零高度飛行器”的美譽,是壹種具有廣闊前景的新型交通工具,特別適合城市軌道交通。磁懸浮列車按懸浮方式不同壹般分為推斥型和吸力型兩種,按運行速度又有高速和中低速之分,這次國防科大研制開發的磁懸浮列車屬於中低速常導吸力型磁懸浮列車。
磁懸浮列車的種類
磁懸浮列車分為常導型和超導型兩大類。常導型也稱常導磁吸型,以德國高速常導磁浮列車transrapid為代表,它是利用普通直流電磁鐵電磁吸力的原理將列車懸起,懸浮的氣隙較小,壹般為10毫米左右。常導型高速磁懸浮列車的速度可達每小時400~500公裏,適合於城市間的長距離快速運輸。而超導型磁懸浮列車也稱超導磁斥型,以日本MAGLEV為代表。它是利用超導磁體產生的強磁場,列車運行時與布置在地面上的線圈相互作用,產生電動斥力將列車懸起,懸浮氣隙較大,壹般為100毫米左右,速度可達每小時500公裏以上。這兩種磁懸浮列車各有優缺點和不同的經濟技術指標,德國青睞前者,集中精力研制常導高速磁懸浮技術;而日本則看好後者,全力投入高速超導磁懸浮技術之中。
德國的常導磁懸浮列車
常導磁懸浮列車工作時,首先調整車輛下部的懸浮和導向電磁鐵的電磁吸力,與地面軌道兩側的繞組發生磁鐵反作用將列車浮起。在車輛下部的導向電磁鐵與軌道磁鐵的反作用下,使車輪與軌道保持壹定的側向距離,實現輪軌在水平方向和垂直方向的無接觸支撐和無接觸導向。車輛與行車軌道之間的懸浮間隙為10毫米,是通過壹套高精度電子調整系統得以保證的。此外由於懸浮和導向實際上與列車運行速度無關,所以即使在停車狀態下列車仍然可以進入懸浮狀態。
常導磁懸浮列車的驅動運用同步直線電動機的原理。車輛下部支撐電磁鐵線圈的作用就象是同步直線電動機的勵磁線圈,地面軌道內側的三相移動磁場驅動繞組起到電樞的作用,它就象同步直線電動機的長定子繞組。從電動機的工作原理可以知道,當作為定子的電樞線圈有電時,由於電磁感應而推動電機的轉子轉動。同樣,當沿線布置的變電所向軌道內側的驅動繞組提供三相調頻調幅電力時,由於電磁感應作用承載系統連同列車壹起就象電機的“轉子”壹樣被推動做直線運動。從而在懸浮狀態下,列車可以完全實現非接觸的牽引和制動。
日本的超導磁懸浮列車
超導磁懸浮列車的最主要特征就是其超導元件在相當低的溫度下所具有的完全導電性和完全抗磁性。超導磁鐵是由超導材料制成的超導線圈構成,它不僅電流阻力為零,而且可以傳導普通導線根本無法比擬的強大電流,這種特性使其能夠制成體積小功率強大的電磁鐵。
超導磁懸浮列車的車輛上裝有車載超導磁體並構成感應動力集成設備,而列車的驅動繞組和懸浮導向繞組均安裝在地面導軌兩側,車輛上的感應動力集成設備由動力集成繞組、感應動力集成超導磁鐵和懸浮導向超導磁鐵三部分組成。當向軌道兩側的驅動繞組提供與車輛速度頻率相壹致的三相交流電時,就會產生壹個移動的電磁場,因而在列車導軌上產生磁波,這時列車上的車載超導磁體就會受到壹個與移動磁場相同步的推力,正是這種推力推動列車前進。其原理就象沖浪運動壹樣,沖浪者是站在波浪的頂峰並由波浪推動他快速前進的。與沖浪者所面對的難題相同,超導磁懸浮列車要處理的也是如何才能準確地駕馭在移動電磁波的頂峰運動的問題。為此,在地面導軌上安裝有探測車輛位置的高精度儀器,根據探測儀傳來的信息調整三相交流電的供流方式,精確地控制電磁波形以使列車能良好地運行。
超導磁懸浮列車也是由沿線分布的變電所向地面導軌兩側的驅動繞組提供三相交流電,並與列車下面的動力集成繞組產生電感應而驅動,實現非接觸性牽引和制動。但地面導軌兩側的懸浮導向繞組與外部動力電源無關,當列車接近該繞組時,列車超導磁鐵的強電磁感應作用將自動地在地面繞組中感生電流,因此在其感應電流和超導磁鐵之間產生了電磁力,從而將列車懸起,並經精密傳感器檢測軌道與列車之間的間隙,使其始終保持100毫米的懸浮間隙。同時,與懸浮繞組呈電氣連接的導向繞組也將產生電磁導向力,保證了列車在任何速度下都能穩定地處於軌道中心行駛。
目前存在的技術問題
盡管磁懸浮列車技術有上述的許多優點,但仍然存在壹些不足:
(1)由於磁懸浮系統是以電磁力完成懸浮、導向和驅動功能的,斷電後磁懸浮的安全保障措施,尤其是列車停電後的制動問題仍然是要解決的問題。其高速穩定性和可靠性還需很長時間的運行考驗。
(2)常導磁懸浮技術的懸浮高度較低,因此對線路的平整度、路基下沈量及道岔結構方面的要求較超導技術更高。
(3)超導磁懸浮技術由於渦流效應懸浮能耗較常導技術更大,冷卻系統重,強磁場對人體與環境都有影響。