根據動植物的特點能發明什麽拜托了各位 謝謝
飛機--- 鳥 聲納---海豚 在我國,早就有著模仿生物的事例。相傳在公元前三千多年,我們的祖先有巢氏模仿鳥類在樹上營巢,以防禦猛獸的傷害;四千多年前,我們的祖先“見飛蓬轉而知為車”,即見到隨風旋轉的飛蓬草而發明輪子,做有裝成輪子的車。古代廟宇中大殿之前的山門的建造,就其建築結構來看,頗有點像大象的架勢,柱子又圓又粗,仿佛像大象的腿。 我國古代勤勞勇敢的勞動人民對於絢麗的天空、翺翔的蒼鷹早就有著各種美妙的幻想。根據秦漢時期史書記載,兩千多年前,我國人民就發明了風箏,並且應用於軍事聯絡。春秋戰國時代,魯國匠人魯班,本名公輸般,首先開始研制能飛的木鳥;並且他從壹種能劃破皮膚的帶齒的草葉得到啟示而發明了鋸子。據《杜陽雜編》記載,唐朝有個韓誌和,“善雕木作鸞、鶴、鴉、鵲之狀,飲啄動靜與真無異,以關戾置於腹內,發之則淩雲奮飛,可高達三丈至壹二百步外,始卻下。”西漢時期,有人用鳥的羽毛做成翅膀,從高臺上飛下來,企圖模仿鳥的飛行。以上幾例,足以說明我國古代勞動人民對鳥類的撲翼和飛行,進行了細致的觀察和研究,這也是最早的仿生設計活動之壹。明代發明的壹種火箭武器“神火飛鴉”,也反映了人們向鳥類借鑒的願望。 我國古代勞動人民對水生動物——魚類的模仿也卓有成效。通過對水中生活的魚類的模仿,古人伐木鑿船,用木材做成魚形的船體,仿照魚的胸鰭和尾鰭制成雙槳和單櫓,由此取得水上運輸的自由。後來隨制作水平提高而出現的龍船,多少受到了不少動物外形的影響。古代水戰中使用的火箭武器 “火龍出水”,多少有點模仿動物的意思。以上事例說明,我國古代勞動人民早期的仿生設計活動,為開發我國光輝燦爛的古代文明,創造了非凡的業績。 外國的文明史上,大致也經歷了相似的過程。在包含了豐富生產知識的古希臘神話中,有人用羽毛和蠟做成翅膀,逃出迷宮;還有泰爾發明了鋸子,傳說這是從魚背骨和蛇的腭骨的形狀受到啟示而創造出來的。十五世紀時,德國的天文學家米勒制造了壹只鐵蒼蠅和壹只機械鷹,並進行了飛行表演。 壹八ОΟ年左右,英國科學家、空氣動力學的創始人之壹—凱利,模仿鱒魚和山鷸的紡錘形,找到阻力小的流線型結構。凱利還模仿鳥翅設計了壹種機翼曲線,對航空技術的誕生起了很大的促進作用。同壹時期,法國生理學家馬雷,對鳥的飛行進行了仔細的研究,在他的著作《動物的機器》壹書中,介紹了鳥類的體重與翅膀面積的關系。德國人亥姆霍茲也從研究飛行動物中,發現飛行動物的體重與身體的線度的立方成正比。亥姆霍茲的研究指出了飛行物體身體大小的局限。人們通過對鳥類飛行器官的詳細研究和認真的模仿,根據鳥類飛行機構的原理,終於制造了能夠載人飛行的滑翔機。 後來,設計師又根據鶴的體態設計出了掘土機的懸臂,在壹戰期間,人們從毒氣戰幸存的野豬身上中獲得啟示,模仿野豬的鼻子設計出了防毒面具。在海洋中浮沈靈活的潛水艇又是運用了哪些原理?雖然我們無據考察潛艇設計師在設計潛艇時是否請教了生物界,但是不難設想,設計師壹定懂得魚鰾是魚類用來改變身體同水的比重,使之能在水中沈浮的重要器官。青蛙是水陸兩棲動物,體育工作者就是認真研究了青蛙在水中的運動姿勢,總結出壹套既省力、又快速的遊泳動作——蛙泳。另外,為潛水員制作的蹼,幾乎完全按照青蛙的後肢形狀做成,這就大大提高了潛水員在水中的活動能力 蒼蠅與宇宙飛船 令人討厭的蒼蠅,與宏偉的航天事業似乎風馬牛不相及,但仿生學卻把它們緊密地聯系起來了。 蒼蠅是聲名狼藉的“逐臭之夫”,凡是腥臭汙穢的地方,都有它們的蹤跡。蒼蠅的嗅覺特別靈敏,遠在幾千米外的氣味也能嗅到。但是蒼蠅並沒有“鼻子”,它靠什麽來充當嗅覺的呢? 原來,蒼蠅的“鼻子”——嗅覺感受器分布在頭部的壹對觸角上。 每個“鼻子”只有壹個“鼻孔”與外界相通,內含上百個嗅覺神經細胞。若有氣味進入“鼻孔”,這些神經立即把氣味刺激轉變成神經電脈沖,送往大腦。大腦根據不同氣味物質所產生的神經電脈沖的不同,就可區別出不同氣味的物質。因此,蒼蠅的觸角像是壹臺靈敏的氣體分析儀。 仿生學家由此得到啟發,根據蒼蠅嗅覺器的結構和功能,仿制成功壹種十分奇特的小型氣體分析儀。這種儀器的“探頭”不是金屬,而是活的蒼蠅。就是把非常纖細的微電極插到蒼蠅的嗅覺神經上,將引導出來的神經電信號經電子線路放大後,送給分析器;分析器壹經發現氣味物質的信號,便能發出警報。這種儀器已經被安裝在宇宙飛船的座艙裏,用來檢測艙內氣體的成分。 這種小型氣體分析儀,也可測量潛水艇和礦井裏的有害氣體。利用這種原理,還可用來改進計算機的輸入裝置和有關氣體色層分析儀的結構原理中。 從螢火蟲到人工冷光 自從人類發明了電燈,生活變得方便、豐富多了。但電燈只能將電能的很少壹部分轉變成可見光,其余大部分都以熱能的形式浪費掉了,而且電燈的熱射線有害於人眼。那麽,有沒有只發光不發熱的光源呢? 人類又把目光投向了大自然。 在自然界中,有許多生物都能發光,如細菌、真菌、蠕蟲、軟體動物、甲殼動物、昆蟲和魚類等,而且這些動物發出的光都不產生熱,所以又被稱為“冷光”。 在眾多的發光動物中,螢火蟲是其中的壹類。螢火蟲約有1 500種,它們發出的冷光的顏色有黃綠色、橙色,光的亮度也各不相同。螢火蟲發出冷光不僅具有很高的發光效率,而且發出的冷光壹般都很柔和,很適合人類的眼睛,光的強度也比較高。因此,生物光是壹種人類理想的光。 科學家研究發現,螢火蟲的發光器位於腹部。這個發光器由發光層、透明層和反射層三部分組成。發光層擁有幾千個發光細胞,它們都含有熒光素和熒光酶兩種物質。在熒光酶的作用下,熒光素在細胞內水分的參與下,與氧化合便發出熒光。螢火蟲的發光,實質上是把化學能轉變成光能的過程。 早在40年代,人們根據對螢火蟲的研究,創造了日光燈,使人類的照明光源發生了很大變化。近年來,科學家先是從螢火蟲的發光器中分離出了純熒光素,後來又分離出了熒光酶,接著,又用化學方法人工合成了熒光素。由熒光素、熒光酶、ATP(三磷酸腺苷)和水混合而成的生物光源,可在充滿爆炸性瓦斯的礦井中當閃光燈。由於這種光沒有電源,不會產生磁場,因而可以在生物光源的照明下,做清除磁性水雷等工作。 現在,人們已能用摻和某些化學物質的方法得到類似生物光的冷光,作為安全照明用。 電魚與伏特電池 自然界中有許多生物都能產生電,僅僅是魚類就有500余種 。人們將這些能放電的魚,統稱為“電魚”。 各種電魚放電的本領各不相同。放電能力最強的是電鰩、電鯰和電鰻。中等大小的電鰩能產生70伏左右的電壓,而非洲電鰩能產生的電壓高達220伏;非洲電鯰能產生350伏的電壓;電鰻能產生500伏的電壓,有壹種南美洲電鰻竟能產生高達880伏的電壓,稱得上電擊冠軍,據說它能擊斃像馬那樣的大動物。 電魚放電的奧秘究竟在哪裏?經過對電魚的解剖研究, 終於發現在電魚體內有壹種奇特的發電器官。這些發電器是由許多叫電板或電盤的半透明的盤形細胞構成的。由於電魚的種類不同,所以發電器的形狀、位置、電板數都不壹樣。電鰻的發電器呈棱形,位於尾部脊椎兩側的肌肉中;電鰩的發電器形似扁平的腎臟,排列在身體中線兩側,***有200萬塊電板;電鯰的發電器起源於某種腺體,位於皮膚與肌肉之間,約有500萬塊電板。單個電板產生的電壓很微弱,但由於電板很多,產生的電壓就很大了。 電魚這種非凡的本領,引起了人們極大的興趣。19世紀初,意大利物理學家伏特,以電魚發電器官為模型,設計出世界上最早的伏打電池。因為這種電池是根據電魚的天然發電器設計的,所以把它叫做“人造電器官”。對電魚的研究,還給人們這樣的啟示:如果能成功地模仿電魚的發電器官,那麽,船舶和潛水艇等的動力問題便能得到很好的解決。 水母的順風耳 “燕子低飛行將雨,蟬鳴雨中天放晴。”生物的行為與天氣的變化有壹定關系。沿海漁民都知道,生活在沿岸的魚和水母成批地遊向大海,就預示著風暴即將來臨。 水母,又叫海蜇,是壹種古老的腔腸動物,早在5億年前,它就漂浮在海洋裏了。這種低等動物有預測風暴的本能,每當風暴來臨前,它就遊向大海避難去了。 原來,在藍色的海洋上,由空氣和波浪摩擦而產生的次聲波 (頻率為每秒8—13次),總是風暴來臨的前奏曲。這種次聲波人耳無法聽到,小小的水母卻很敏感。仿生學家發現,水母的耳朵的***振腔裏長著壹個細柄,柄上有個小球,球內有塊小小的聽石,當風暴前的次聲波沖擊水母耳中的聽石時,聽石就剌激球壁上的神經感受器,於是水母就聽到了正在來臨的風暴的隆隆聲。 仿生學家仿照水母耳朵的結構和功能,設計了水母耳風暴預測儀,相當精確地模擬了水母感受次聲波的器官。把這種儀器安裝在艦船的前甲板上,當接受到風暴的次聲波時,可令旋轉360°的喇叭自行停止旋轉,它所指的方向,就是風暴前進的方向;指示器上的讀數即可告知風暴的強度。這種預測儀能提前15小時對風暴作出預報,對航海和漁業的安全都有重要意義。 蝙蝠的超聲波,發明雷達 昆蟲個體小,種類和數量龐大,占現存動物的75%以上,遍布全世界。它們有各自的生存絕技,有些技能連人類也自嘆不如。人們對自然資源的利用範圍越來越廣泛,特別是仿生學方面的任何成就,都來自生物的某種特性。 蝴蝶與仿生 五彩的蝴蝶錦色粲然,如重月紋鳳蝶、褐脈金斑蝶等,尤其是螢光翼鳳蝶,其後翅在陽光下時而金黃,時而翠綠,有時還由紫變藍。科學家通過對蝴蝶色彩的研究,為軍事防禦帶來了極大的裨益。在二戰期間,德軍包圍了列寧格勒,企圖用轟炸機摧毀其軍事目標和其他防禦設施。蘇聯昆蟲學家施萬維奇根據當時人們對偽裝缺乏認識的情況,提出利用蝴蝶的色彩在花叢中不易被發現的道理,在軍事設施上覆蓋蝴蝶花紋般的偽裝。因此,盡管德軍費盡心機,但列寧格勒的軍事基地仍安然無惹,為贏得最後的勝利奠定了堅實的基礎。根據同樣的原理,後來人們還生產出了迷彩服,大大減少了戰鬥中的傷亡。 人造衛星在太空中由於位置的不斷變化可引起溫度驟然變化,有時溫差可高達兩、三百度,嚴重影響許多儀器的正常工作。科學家們受蝴蝶身上的鱗片會隨陽光的照射方向自動變換角度而調節體溫的啟發,將人造衛星的控溫系統制成了葉片正反兩面輻射、散熱能力相差很大的百葉窗樣式,在每扇窗的轉動位置安裝有對溫度敏感的金屬絲,隨溫度變化可調節窗的開合,從而保持了人造衛星內部溫度的恒定,解決了航天事業中的壹大難題。 甲蟲與仿生 屁步甲炮蟲自衛時,可噴射出具有惡臭的高溫液體“炮彈”,以迷惑、刺激和驚嚇敵害。科學家將其解剖後發現甲蟲體內有3個小室,分別儲有二元酚溶液、雙氧水和生物酶。二元酚和雙氧水流到第三小室與生物酶混合發生化學反應,瞬間就成為100℃的毒液,並迅速射出。這種原理目前已應用於軍事技術中。二戰期間,德國納粹為了戰爭的需要,據此機理制造出了壹種功率極大且性能安全可靠的新型發動機,安裝在飛航式導彈上,使之飛行速度加快,安全穩定,命中率提高,英國倫敦在受其轟炸時損失慘重。美國軍事專家受甲蟲噴射原理的啟發研制出了先進的二元化武器。這種武器將兩種或多種能產生毒劑的化學物質分裝在兩個隔開的容器中,炮彈發射後隔膜破裂,兩種毒劑中間體在彈體飛行的8—10秒內混合並發生反應,在到達目標的瞬間生成致命的毒劑以殺傷敵人。它們易於生產、儲存、運輸,安全且不易失效。螢火蟲可將化學能直接轉變成光能,且轉化效率達100%,而普通電燈的發光效率只有6%。人們模仿螢火蟲的發光原理制成的冷光源可將發光效率提高十幾倍,大大節約了能量。另外,根據甲蟲的視動反應機制研制成功的空對地速度計已成功地應用於航空事業中。