直升飛機有多快?
直升飛機的最高平均時速為400.87公裏,是由約翰·埃金頓和德萊克·科魯斯於1986年8月1日駕駛壹架韋斯特蘭·林耐克斯公司生產的示範直升飛機按國際航空協會的規定在英國薩默塞特郡的格拉斯頓伯裏上空創下的。 選自《吉尼斯世界紀錄大全》2000年版
現代直升機
20世紀90年代是直升機發展的第四階段,出現了目視、聲學、紅外及雷達綜合隱身設計的武裝偵察直升機。典型機種有:美國的RAH-66和S-92,國際合作的“虎”、NH90和EH101等,稱為第四代直升機。
這個階段的直升機具有以下特點:采用第3代渦軸發動機,這種發動機雖然仍采用自由渦軸結構,但采用了先進的發動機全權數字控制系統及自動監控系統,並與機載計算機管理系統集成在壹起,有了顯著的技術進步和綜合特性。第3代渦軸發動機的耗油率僅為0.28千克/千瓦小時,低於活塞式發動機的耗油率。其代表性的發動機有T800、RTM322和RTM390。槳葉采用碳纖維、凱芙拉等高級復合材料制成,槳葉壽命達到無限。新型槳尖形狀繁多,較突出的有拋物線後掠形和先前掠再後掠的BERP槳尖。這些新槳尖的***同特點是可以減弱槳尖的壓縮性效應,改善槳葉的氣動載荷分布,降低旋翼的振動和噪聲,提高旋翼的氣動效率。球柔性和無軸承槳轂獲得了廣泛應用,槳轂殼體及槳葉的連接件采用復合材料,使結構更為緊湊,重量大為降低,阻力大大減小。旋翼升阻比達到10.5,旋翼效率為0.8。這個階段應用了無尾槳反扭矩系統,其優點是具有良好的操縱響應特性、振動小、噪聲低,不需要尾傳動軸和尾減速,使零部件數量大大減小,因而提高了可維護性。復合材料在直升機上獲得了前所未有的廣泛應用。直升機開始采用復合材料主結構,復合材料的應用比例大幅度上升,通常占機體結構重量的30~50%。這壹時期的民用型直升機的空重/總重比約為0.37。高度集成化的電子設備。計算機技術、信息技術及智能技術在直升機上獲得應用,直升機電子設備朝著高度集成化方向發展。這壹時期的直升機,采用了先進的增穩增控裝置,用電傳、光傳操縱取代了常規的操縱系統,采用先進的捷聯慣導、衛星導航設備及組合導航技術,先進的通訊、識別及信息傳輸設備,先進的目標識別、瞄準、武器發射等火控設備及先進的電子對抗設備,采用了總線信息傳輸與數據融合技術,並正向傳感器融合方向發展。機上的電子、火控及飛行控制系統等通過多余度數字數據總線交連,實現了信息***享。采用了多功能集成顯示技術,用少量多功能顯示器代替大量的單個儀表,通過鍵盤控制顯示直升機的飛行信息,利用中央計算機對通訊、導航、飛行控制、敵我識別、電子對抗、系統監視、武器火控的信息進行集成處理從而進行集成控制。采用這類先進的集成電子設備,大大簡化了直升機座艙布局和儀表板布置,系統部件得到簡化,重量大大減輕。更主要的是極大地減輕了飛行員工作負擔,改善了直升機的飛機品質和使用性能。直升機的全機升阻比達到6.6,振動水平降到0.05g,噪聲水平小於90分貝,最大速度可達到350千米/小時。