当前位置 - 股票行情交易網 - 企業服務 - 關於質數,什麽是質數?

關於質數,什麽是質數?

什麽是質數?就是在所有比1大的整數中,除了1和它本身以外,不再有別的約數,這種整數叫做質數,質數又叫做素數。還可以說成質數有兩個約數。這終規只是文字上的解釋而已。能不能有壹個代數式,規定用字母表示的那個數為規定的任何值時,所代入的代數式的值都是質數呢?

質數的分布是沒有規律的,往往讓人莫名其妙。如:101、401、601、701都是質數,但上下面的301(7*43)和901(17*53)卻是合數。

有人做過這樣的驗算:1^2+1+41=43,2^2+2+41=47,3^2+3+41=53……於是就可以有這樣壹個公式:設壹正數為n,則n^2+n+41的值壹定是壹個質數。這個式子壹直到n=39時,都是成立的。但n=40時,其式子就不成立了,因為40^2+40+41=1681=41*41。

被稱為“17世紀最偉大的法國數學家”費爾馬,也研究過質數的性質。他發現,設Fn=2^(2^n),則當n分別等於0、1、2、3、4時,Fn分別給出3、5、17、257、65537,都是質數,由於F5太大(F5=4292967297),他沒有再往下檢測就直接猜測:對於壹切自然數,Fn都是質數。但是,就是在F5上出了問題!費爾馬死後67年,25歲的瑞士數學家歐拉證明:F5=4292967297=641*6700417,並非質數,而是合數。

更加有趣的是,以後的Fn值,數學家再也沒有找到哪個Fn值是質數,全部都是合數。目前由於平方開得較大,因而能夠證明的也很少。現在數學家們取得Fn的最大值為:n=1495。這可是個超級天文數字,其位數多達10^10584位,當然它盡管非常之大,但也不是個質數。質數和費爾馬開了個大玩笑!

17世紀還有位法國數學家叫梅森,他曾經做過壹個猜想:2^p-1代數式,當p是質數時,2^p-1是質數。他驗算出了:當p=2、3、5、7、17、19時,所得代數式的值都是質數,後來,歐拉證明p=31時,2^p-1是質數。

p=2,3,5,7時,Mp都是素數,但M11=2047=23×89不是素數。

還剩下p=67、127、257三個梅森數,由於太大,長期沒有人去驗證。梅森去世250年後,美國數學家科勒證明,2^67-1=193707721*761838257287,是壹個合數。這是第九個梅森數。20世紀,人們先後證明:第10個梅森數是質數,第11個梅森數是合數。質數排列得這樣雜亂無章,也給人們尋找質數規律造成了困難。

現在,數學家找到的最大的梅森數是壹個有9808357位的數:2^32582657-1。數學雖然可以找到很大的質數,但質數的規律還是無法循通。