当前位置 - 股票行情交易網 - 裝修設計 - 量化投資—策略與技術的作品目錄

量化投資—策略與技術的作品目錄

《量化投資—策略與技術》

策略篇

第 1章 量化投資概念

1.1 什麽是量化投資 2

1.1.1 量化投資定義 2

1.1.2 量化投資理解誤區 3

1.2 量化投資與傳統投資比較 6

1.2.1 傳統投資策略的缺點 6

1.2.2 量化投資策略的優勢 7

1.2.3 量化投資與傳統投資策略的比較 8

1.3 量化投資歷史 10

1.3.1 量化投資理論發展 10

1.3.2 海外量化基金的發展 12

1.3.3 量化投資在中國 15

1.4 量化投資主要內容 16

1.5 量化投資主要方法 21

.第 2章 量化選股 25

2.1 多因子 26

2.1.1 基本概念 27

2.1.2 策略模型 27

2.1.3 實證案例:多因子選股模型 30

2.2 風格輪動 35

2.2.1 基本概念 35

2.2.2 盈利預期生命周期模型 38

2.2.3 策略模型 40

2.2.4 實證案例:中信標普風格 41

2.2.5 實證案例:大小盤風格 44

2.3 行業輪動 47

2.3.1 基本概念 47

2.3.2 m2行業輪動策略 50

2.3.3 市場情緒輪動策略 52

2.4 資金流 56

2.4.1 基本概念 56

2.4.2 策略模型 59

2.4.3 實證案例:資金流選股策略 60

2.5 動量反轉 63

2.5.1 基本概念 63

2.5.2 策略模型 67

2.5.3 實證案例:動量選股策略和反轉選股策略 70

2.6 壹致預期 73

2.6.1 基本概念 74

2.6.2 策略模型 76

2.6.3 實證案例:壹致預期模型案例 78

2.7 趨勢追蹤 84

2.7.1 基本概念 84

2.7.2 策略模型 86

2.7.3 實證案例:趨勢追蹤選股模型 92

2.8 籌碼選股 94

2.8.1 基本概念 95

2.8.2 策略模型 97

2.8.3 實證案例:籌碼選股模型 99

2.9 業績評價 104

2.9.1 收益率指標 104

2.9.2 風險度指標 105

第 3章 量化擇時 111

3.1 趨勢追蹤 112

3.1.1 基本概念 112

3.1.2 傳統趨勢指標 113

3.1.3 自適應均線 121

3.2 市場情緒 125

3.2.1 基本概念 126

3.2.2 情緒指數 128

3.2.3 實證案例:情緒指標擇時策略 129

3.3 有效資金 133

3.3.1 基本概念 133

3.3.2 策略模型 134

3.3.3 實證案例:有效資金擇時模型 137

3.4 牛熊線 141

3.4.1 基本概念 141

3.4.2 策略模型 143

3.4.3 實證案例:牛熊線擇時模型 144

3.5 husrt指數 146

3.5.1 基本概念 146

3.5.2 策略模型 148

3.5.3 實證案例 149

3.6 支持向量機 152

3.6.1 基本概念 152

3.6.2 策略模型 153

3.6.3 實證案例:svm擇時模型 155

3.7 swarch模型 160

3.7.1 基本概念 160

3.7.2 策略模型 161

3.7.3 實證案例:swarch模型 164

3.8 異常指標 168

3.8.1 市場噪聲 168

3.8.2 行業集中度 170

3.8.3 興登堡兇兆 172

第 4章 股指期貨套利 180

4.1 基本概念 181

4.1.1 套利介紹 181

4.1.2 套利策略 183

4.2 期現套利 185

4.2.1 定價模型 185

4.2.2 現貨指數復制 186

4.2.3 正向套利案例 190

4.2.4 結算日套利 192

4.3 跨期套利 195

4.3.1 跨期套利原理 195

4.3.2 無套利區間 196

4.3.3 跨期套利觸發和終止 197

4.3.4 實證案例:跨期套利策略 199

4.3.5 主要套利機會 200

4.4 沖擊成本 203

4.4.1 主要指標 204

4.4.2 實證案例:沖擊成本 205

4.5 保證金管理 208

4.5.1 var方法 208

4.5.2 var計算方法 209

4.5.3 實證案例 211

第 5章 商品期貨套利 214

5.1 基本概念 215

5.1.1 套利的條件 216

5.1.2 套利基本模式 217

5.1.3 套利準備工作 219

5.1.4 常見套利組合 221

5.2 期現套利 225

5.2.1 基本原理 225

5.2.2 操作流程 226

5.2.3 增值稅風險 230

5.3 跨期套利 231

5.3.1 套利策略 231

5.3.2 實證案例:pvc跨期套利策略 233

5.4 跨市場套利 234

5.4.1 套利策略 234

5.4.2 實證案例:倫銅—滬銅跨市場套利 235

5.5 跨品種套利 236

5.5.1 套利策略 237

5.5.2 實證案例 238

5.6 非常狀態處理 240

第 6章 統計套利 242

6.1 基本概念 243

6.1.1 統計套利定義 243

6.1.2 配對交易 244

6.2 配對交易 247

6.2.1 協整策略 247

6.2.2 主成分策略 254

6.2.3 績效評估 256

6.2.4 實證案例:配對交易 258

6.3 股指套利 261

6.3.1 行業指數套利 261

6.3.2 國家指數套利 263

6.3.3 洲域指數套利 264

6.3.4 全球指數套利 266

6.4 融券套利 267

6.4.1 股票—融券套利 267

6.4.2 可轉債—融券套利 268

6.4.3 股指期貨—融券套利 269

6.4.4 封閉式基金—融券套利 271

6.5 外匯套利 272

6.5.1 利差套利 273

6.5.2 貨幣對套利 275

第 7章 期權套利 277

7.1 基本概念 278

7.1.1 期權介紹 278

7.1.2 期權交易 279

7.1.3 牛熊證 280

7.2 股票/期權套利 283

7.2.1 股票—股票期權套利 283

7.2.2 股票—指數期權套利 284

7.3 轉換套利 285

7.3.1 轉換套利 285

7.3.2 反向轉換套利 287

7.4 跨式套利 288

7.4.1 買入跨式套利 289

7.4.2 賣出跨式套利 291

7.5 寬跨式套利 293

7.5.1 買入寬跨式套利 293

7.5.2 賣出寬跨式套利 294

7.6 蝶式套利 296

7.6.1 買入蝶式套利 296

7.6.2 賣出蝶式套利 298

7.7 飛鷹式套利 299

7.7.1 買入飛鷹式套利 300

7.7.2 賣出飛鷹式套利 301

第 8章 算法交易 304

8.1 基本概念 305

8.1.1 算法交易定義 305

8.1.2 算法交易分類 306

8.1.3 算法交易設計 308

8.2 被動交易算法 309

8.2.1 沖擊成本 310

8.2.2 等待風險 312

8.2.3 常用被動型交易策略 314

8.3 vwap算法 316

8.3.1 標準vwap算法 316

8.3.2 改進型vwap算法 319

第 9章 其他策略 323

9.1 事件套利 324

9.1.1 並購套利策略 324

9.1.2 定向增發套利 325

9.1.3 套利重倉停牌股票的投資組合 326

9.1.4 封閉式投資組合套利 327

9.2 etf套利 328

9.2.1 基本概念 328

9.2.2 無風險套利 330

9.2.3 其他套利 334

9.3 lof套利 335

9.3.1 基本概念 335

9.3.2 模型策略 336

9.3.3 實證案例:lof 套利 337

9.4 高頻交易 341

9.4.1 流動性回扣交易 341

9.4.2 獵物算法交易 342

9.4.3 自動做市商策略 343

9.4.4 程序化交易 343

理論篇

第 10章 人工智能 346

10.1 主要內容 347

10.1.1 機器學習 347

10.1.2 自動推理 350

10.1.3 專家系統 353

10.1.4 模式識別 356

10.1.5 人工神經網絡 358

10.1.6 遺傳算法 362

10.2 人工智能在量化投資中的應用 366

10.2.1 模式識別短線擇時 366

10.2.2 rbf神經網絡股價預測 370

10.2.3 基於遺傳算法的新股預測 375

第 11章 數據挖掘 381

11.1 基本概念 382

11.1.1 主要模型 382

11.1.2 典型方法 384

11.2 主要內容 385

11.2.1 分類與預測 385

11.2.2 關聯規則 391

11.2.3 聚類分析 397

11.3 數據挖掘在量化投資中的應用 400

11.3.1 基於som 網絡的股票聚類分析方法 400

11.3.2 基於關聯規則的板塊輪動 403

第 12章 小波分析 407

12.1 基本概念 408

12.2 小波變換主要內容 409

12.2.1 連續小波變換 409

12.2.2 連續小波變換的離散化 410

12.2.3 多分辨分析與mallat算法 411

12.3小波分析在量化投資中的應用 414

12.3.1 k線小波去噪 414

12.3.2 金融時序數據預測 420

第 13章 支持向量機 429

13.1 基本概念 430

13.1.1 線性svm 430

13.1.2 非線性svm 433

13.1.3 svm分類器參數選擇 435

13.1.4 svm分類器從二類到多類的推廣 436

13.2 模糊支持向量機 437

13.2.1 增加模糊後處理的svm 437

13.2.2 引入模糊因子的svm訓練算法 439

13.3 svm在量化投資中的應用 440

13.3.1 復雜金融時序數據預測 440

13.3.2 趨勢拐點預測 445

第 14章 分形理論 452

14.1 基本概念 453

14.1.1 分形定義 453

14.1.2 幾種典型的分形 454

14.1.3 分形理論的應用 456

14.2 主要內容 457

14.2.1 分形維數 457

14.2.2 l系統 458

14.2.3 ifs系統 460

14.3 分形理論在量化投資中的應用 461

14.3.1 大趨勢預測 461

14.3.2 匯率預測 466

第 15章 隨機過程 473

15.1 基本概念 473

15.2 主要內容 476

15.2.1 隨機過程的分布函數 476

15.2.2 隨機過程的數字特征 476

15.2.3 幾種常見的隨機過程 477

15.2.4 平穩隨機過程 479

15.3 灰色馬爾可夫鏈股市預測 480

第 16章 it技術 486

16.1 數據倉庫技術 486

16.1.1 從數據庫到數據倉庫 487

16.1.2 數據倉庫中的數據組織 489

16.1.3 數據倉庫的關鍵技術 491

16.2 編程語言 493

16.2.1 GPU算法交易 493

16.2.2 MATLAB 語言 497

16.2.3 c#語言 504

第 17章 主要數據與工具 509

17.1 名策多因子分析系統 509

17.2 MultiCharts:程序化交易平臺 511

17.3 交易開拓者:期貨自動交易平臺 514

17.4 大連交易所套利指令 518

17.5 mt5:外匯自動交易平臺 522

第 18章 量化對沖交易系統:D-alpha 528

18.1 系統構架 528

18.2 策略分析流程 530

18.3 核心算法 532

18.4 驗證結果 534

表目錄

表1 1 不同投資策略對比 7

表2 1 多因子選股模型候選因子 30

表2 2 多因子模型候選因子初步檢驗 31

表2 3 多因子模型中通過檢驗的有效因子 32

表2 4 多因子模型中剔除冗余後的因子 33

表2 5 多因子模型組合分段收益率 33

表2 6 晨星市場風格判別法 36

表2 7 夏普收益率基礎投資風格鑒別 37

表2 8 中信標普風格指數 41

表2 9 風格動量策略組合月均收益率 43

表2 10 大小盤風格輪動策略月收益率均值 46

表2 11 中國貨幣周期分段(2000—2009年) 49

表2 12 滬深300行業指數統計 50

表2 13 不同貨幣階段不同行業的收益率 51

表2 14 招商資金流模型(cmsmf)計算方法 58

表2 15 招商資金流模型(cmsmf)選股指標定義 59

表2 16 資金流模型策略——滬深300 61

表2 17 資金流模型策略——全市場 62

表2 18 動量組合相對基準的平均年化超額收益(部分) 68

表2 19 反轉組合相對基準的平均年化超額收益(部分) 69

表2 20 動量策略風險收益分析 71

表2 21 反轉策略風險收益分析 73

表2 22 趨勢追蹤技術收益率 93

表2 23 籌碼選股模型中單個指標的收益率情況對比 99

表3 1 ma指標擇時測試最好的20 組參數及其表現 117

表3 2 4個趨勢型指標最優參數下的獨立擇時交易表現比較 120

表3 3 有交易成本情況下不同信號個數下的綜合擇時策略 120

表3 4 自適應均線擇時策略收益率分析 124

表3 5 市場情緒類別 126

表3 6 滬深300指數在不同情緒區域的當月收益率比較 128

表3 7 滬深300指數在不同情緒變化區域的當月收益率比較 129

表3 8 滬深300指數在不同情緒區域的次月收益率比較 130

表3 9 滬深300指數在不同情緒變化區域的次月收益率比較 130

表3 10 情緒指數擇時收益率統計 132

表3 11 svm擇時模型的指標 156

表3 12 svm對滬深300指數預測結果指標匯總 156

表3 13 svm擇時模型在整體市場的表現 156

表3 14 svm擇時模型在單邊上漲市的表現 157

表3 15 svm擇時模型在單邊下跌市的表現 158

表3 16 svm擇時模型在震蕩市的表現 159

表3 17 噪聲交易在熊市擇時的收益率 170

表4 1 各種方法在不同股票數量下的跟蹤誤差(年化) 190

表4-2 股指期貨多頭跨期套利過程分析 199

表4 3 不同開倉比例下的不同保證金水平能夠覆蓋的市場波動及其概率 211

表4 4 不同倉單持有期下的保證金覆蓋比例 212

表6 1 融券標的股票中在樣本期內最相關的50 對組合(部分) 248

表6 2 殘差的平穩性、自相關等檢驗 249

表6 3 在不同的閾值下建倉、平倉所能獲得的平均收益 251

表6 4 采用不同的模型在樣本內獲取的收益率及最優閾值 252

表6 5 采用不同的模型、不同的外推方法在樣本外獲取的收益率(%) 253

表6 6 主成分配對交易在樣本內取得的收益率及最優閾值 255

表6 7 主成分配對交易在樣本外的效果 255

表6-8 各種模型下統計套利的結果 256

表6 9 延後開倉+提前平倉策略實證結果 260

表6 10 各行業的配對交易結果 261

表7 1 多頭股票-期權套利綜合分析表 283

表7 2 多頭股票—股票期權套利案例損益分析表 284

表7 3 多頭股票-指數期權套利案例損益分析表 285

表7 4 轉換套利分析過程 286

表7 5 買入跨式套利綜合分析表 289

表7 6 買入跨式套利交易細節 289

表7 7 賣出跨式套利綜合分析表 291

表7 8 賣出跨式套利交易細節 292

表7 9 買入寬跨式套利綜合分析表 293

表7 10 賣出寬跨式套利綜合分析表 294

表7 11 買入蝶式套利綜合分析表 296

表7 12 賣出蝶式套利綜合分析表 298

表7 13 買入飛鷹套利分析表 300

表7 14 賣出飛鷹式套利綜合分析表 301

表9 1 主要並購方式 324

表9 2 並購套利流程 325

表9 3 鵬華300 lof兩次正向套利的情況 339

表9 4 鵬華300 lof兩次反向套利的情況 340

表10 1 自動推理中連詞系統 352

表10 2 模式識別短線擇時樣本數據分類 369

表10 3 rbf神經網絡股價預測結果 375

表10 4 遺傳算法新股預測參數設置 379

表10 5 遺傳算法新股預測結果 380

表11 1 決策樹數據表 389

表11 2 關聯規則案例數據表 392

表11 3 som股票聚類分析結果 403

表11 4 21種股票板塊指數布爾關系表數據片斷 404

表12 1 深發展a日收盤價小波分析方法預測值與實際值比較 427

表12 2 不同分解層數的誤差均方根值 428

表13 1 svm滬深300指數預測誤差情況 445

表13 2 svm指數預測和神經網絡預測的比較 445

表13 3 技術反轉點定義與圖型 448

表13 4 svm趨勢拐點預測結果 450

表14 1 持續大漲前後分形各主要參數值 463

表14 2 持續大跌前後分形個主要參數值 465

表14 3 外匯r/ s 分析的各項指標 469

表14 4 v(r/s)曲線回歸檢驗 470

表15 1 灰色馬爾可夫鏈預測深證成指樣本內(2005/1—2006/8) 484

表15 2 灰色馬爾可夫鏈預測深證成指樣本外(2006/9—2006/12) 484

表16-1 vba的12種數據類型 499

表18-1 d-alpha系統在全球市場收益率分析 534