已知三角形三條邊怎麽求面積
已知三角形的三邊,可以使用海倫公式直接計算出三角形的面積,公式中三角形的面積S=√p(p-a)(p-b)(p-c),其中p=(a+b+c),a,b,c是三角形的三條邊。
海倫公式又譯作希倫公式、海龍公式、希羅公式、海倫-秦九韶公式。它是利用三角形的三條邊的邊長直接求三角形面積的公式。相傳這個公式最早是由古希臘數學家阿基米德得出的,而因為這個公式最早出現在海倫的著作《測地術》中,所以被稱為海倫公式。中國秦九韶也得出了類似的公式,稱三斜求積術。
擴展資料:
海倫公式的推導過程:
設三角形的三邊a、b、c的對角分別為A、B、C,則余弦定理為?
cosC = (a^2+b^2-c^2)/2ab?
S=1/2*ab*sinC
=1/2*ab*√(1-cos^2 C)
=1/2*ab*√[1-(a^2+b^2-c^2)^2/4a^2*b^2]
=1/4*√[4a^2*b^2-(a^2+b^2-c^2)^2]
=1/4*√[(2ab+a^2+b^2-c^2)(2ab-a^2-b^2+c^2)]
=1/4*√[(a+b)^2-c^2][c^2-(a-b)^2]
=1/4*√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)]
設p=(a+b+c)/2
則p=(a+b+c)/2, p-a=(-a+b+c)/2, p-b=(a-b+c)/2,p-c=(a+b-c)/2,
上式=√[(a+b+c)(a+b-c)(a-b+c)(-a+b+c)/16]
=√[p(p-a)(p-b)(p-c)]?
所以,三角形ABC面積S=√[p(p-a)(p-b)(p-c)]
百度百科-海倫公式