高壓變頻器的基本原理
高壓大功率變頻調速裝置被廣泛地應用於大型礦業生產廠、石油化工、市政供水、冶金鋼鐵、電力能源等行業的各種風機、水泵、壓縮機、軋鋼機等。
在冶金、化工、電力、市政供水和采礦等行業廣泛應用的泵類負載,占整個用電設備能耗的40%左右,電費在自來水廠甚至占制水成本的50%。這是因為:壹方面,設備在設計時,通常都留有壹定的余量;另壹方面,由於工況的變化,需要泵機輸出不同的流量。隨著市場經濟的發展和自動化,智能化程度的提高,采用高壓變頻器對泵類負載進行速度控制,不但對改進工藝、提高產品質量有好處,又是節能和設備經濟運行的要求,是可持續發展的必然趨勢。對泵類負載進行調速控制的好處甚多。從應用實例看,大多已取得了較好的效果(有的節能高達30%-40%),大幅度降低了自來水廠的制水成本,提高了自動化程度,且有利於泵機和管網的降壓運行,減少了滲漏、爆管,可延長設備使用壽命。 泵類負載的流量調節方法及原理
泵類負載通常以所輸送的液體流量為控制參數,為此,常采用閥門控制和轉速控制兩種方法。
閥門控制
這種方法是借助改變出口閥門開度的大小來調節流量的。它是壹種相沿已久的機械方法。閥門控制的實質是改變管道中流體阻力的大小來改變流量。因為泵的轉速不變,其揚程特性曲線H-Q保持不變,如圖1所示。
當閥門全開時,管阻特性曲線R1-Q與揚程特性曲線H-Q相交於點A,流量為Qa,泵出口壓頭為Ha。若關小閥門,管阻特性曲線變為R2-Q,它與揚程特性曲線H-Q的交點移到點B,此時流量為Qb,泵出口壓頭升高到Hb。則壓頭的升高量為:ΔHb=Hb-Ha。於是產生了陰線部分所示的能量損失:ΔPb=ΔHb×Qb 。
轉速控制
借助改變泵的轉速來調節流量,這是壹種先進的電子控制方法。轉速控制的實質是通過改變所輸送液體的能量來改變流量。因為只是轉速變化,閥門的開度不變,如圖2所示,管阻特性曲線R1-Q也就維持不變。額定轉速時的揚程特性曲線Ha-Q與管阻特性曲線相交於點A,流量為Qa,出口揚程為Ha。
當轉速降低時,揚程特性曲線變為Hc-Q,它與管阻特性曲線R1-Q的交點將下移到C,流變為為Qc 。此時,假設將流量Qc控制為閥門控制方式下的流量Qb,則泵的出口壓頭將降低到Hc。因此,與閥門控制方式相比壓頭降低了:ΔHc=Ha-Hc。據此可節約能量為:ΔPc=ΔHc×Qb。與閥門控制方式相比,其節約的能量為:P=ΔPb+ΔPc=(ΔHb-ΔHc)×Qb。
將這兩種方法相比較可見,在流量相同的情況下,轉速控制避免了閥門控制下因壓頭的升高和管阻增大所帶來的能量損失。在流量減小時,轉速控制使壓頭反而大幅度降低,所以它只需要壹個比閥門控制小得多的,得以充分利用的功率損耗。 泵機在變速下的效率分析
隨著轉速的降低,泵的高效率區段將向左方移動。這說明,轉速控制方式在低速小流量時,仍可使泵機高效率運行。
在變頻狀態下供水方式的研究
在由多點、多泵站構成的供水系統中,需對泵站出口的壓頭進行控制,以便與管網系統適配,達到更好的系統性能指標,這可以分為恒壓供水、變壓供水和分時段變壓供水。
恒壓供水
使泵站出口壓頭維持不變,是該系統控制的目標。在圖4中,給定出口壓頭為Hg。
當流量Q變動時,因轉速變化導致揚程特性H1-Q上下移動,泵的工作點將在H=Hg線上作水平移動(A、B、C、D)。這雖然滿足了流量的要求,但因為管阻特性R變陡,造成了能量浪費。
恒壓供水系統實施比較方便,易於和多泵站供水的中、大型管網系統相協調,具有壹定的通用性,和實用性,所以有些裝備調速泵機的自來水廠樂於采用此法,在恒壓控制方式下,因泵站出口處的壓頭維持不變,使泵並聯特性與負載的實際特性之間有壹定的差距,節能效果不如變壓供水系統。
變壓供水方式
為了節約能量,應盡量使出口壓頭隨著流量的減小而降低(至少不能升高),此時可采用泵站出口端“變壓供水”方式,如圖5所示。在圖中,因轉速下降時揚程特性下移,與管阻特性R1-Q相交於點C,流量從Qa減小到Qc(設流量Qc與恒壓控制時的QB相等)。變壓控制形成了較大的壓差 H=Hac,因而可節約如圖5陰線部分所示的能量。變壓供水因出口壓頭降低,抑制了管阻特性變化所贊成的損耗及水泵的附加損耗,節能效果顯著。 采用升降壓的辦法,將低壓或通用變頻器應用在中、高壓環境中而得名。原理是通過降壓變壓器,將電網電壓降到低壓變頻器額定或允許的電壓輸入範圍內,經變頻器的變換形成頻率和幅度都可變的交流電,再經過升壓變壓器變換成電機所需要的電壓等級。
這種方式,由於采用標準的低壓變頻器,配合降壓,升壓變壓器,故可以任意匹配電網及電動機的電壓等級,容量小的時候(<500KW)改造成本較直接高壓變頻器低。缺點是升降壓變壓器體積大,比較笨重,頻率範圍易受變壓器的影響,還有就是由於引入了變壓器使得系統效率比較低。
壹般高低高變頻器可分為電流型和電壓型兩種。 它采用GTO,SCR或IGCT元件串聯的辦法實現直接的高壓變頻,電壓可達10KV。由於直流環節使用了電感元件,其對電流不夠敏感,因此不容易發生過流故障,逆變器工作也很可靠,保護性能良好。其輸入側采用可控矽相控整流,輸入電流諧波較大。變頻裝置容量大時要考慮對電網的汙染和對通信電子設備的幹擾問題。均壓和緩沖電路,技術復雜,成本高。由於器件較多,裝置體積大,調整和維修都比較困難。逆變橋采用強迫換流,發熱量也比較大,需要解決器件的散熱問題。其優點在於具有四象限運行能力,可以制動。
需要特別說明的是,該類變頻器由於較低的輸入功率因數和較高的輸入輸出諧波,故需要在其輸入輸出側安裝高壓自愈電容。 電路結構采用IGBT 直接串聯技術,也叫直接器件串聯型高壓變頻器。其在直流環節使用高壓電容進行濾波和儲能,輸出電壓可達13.8KV,其優點是可以采用較低耐壓的功率器件,串聯橋臂上的所有IGBT作用相同,能夠實現互為備用,或者進行冗余設計。缺點是電平數較低,僅為兩電平,輸出電壓dV/dt也較大,需要采用特種電動機或加裝***模電壓濾波器和高壓正弦波濾波器,其成本會增加許多。由於它與低壓變頻器有著壹樣的拓撲結構,因此它像低壓變頻器壹樣具有四象限運行功能,也可以實現矢量控制。
這種變頻器同樣需要解決器件的均壓問題,壹般需特殊設計驅動電路和緩沖電路。對於IGBT驅動電路的延時也有極其苛刻的要求。壹旦IGBT的開通、關閉的時間不壹致,或者上升、下降沿的斜率相差太懸殊,均會造成功率器件的損壞. 鉗位型變頻器壹般可分為二極管鉗位型和電容鉗位型。
二極管型
它既可以實現二極管中點嵌位,也可以實現三電平或更多電平的輸出,其技術難度較直接器件串聯型變頻器低。由於直流環節采用了電容元件,因此它仍屬於電壓型變頻器。這種變頻器需要設置輸入變壓器,它的作用是隔離與星角變換,能夠實現12脈沖整流,並提供中間嵌位零電平。通過輔助二極管將IGBT等功率器件強行嵌位於中間零電平上,從而使IGBT兩端不會因過壓而燒毀,又實現了多電平的輸出。
這種變頻器結構,輸出可以不安裝正弦波濾波器。但是由於采用了變壓器,成本上有所增加。
電容型
它采用同橋臂增設懸浮電容的辦法實現了功率器件的嵌位,這種變頻器應用的比較少。