求高中物理化學生物必修二的重點歸納
1.力是物體對物體的作用,是物體發生形變和改變物體的運動狀態(即產生加速度)的原因. 力是矢量。
2.重力 (1)重力是由於地球對物體的吸引而產生的.
[註意]重力是由於地球的吸引而產生,但不能說重力就是地球的吸引力,重力是萬有引力的壹個分力.
但在地球表面附近,可以認為重力近似等於萬有引力
(2)重力的大小:地球表面G=mg,離地面高h處G/=mg/,其中g/=[R/(R+h)]2g
(3)重力的方向:豎直向下(不壹定指向地心)。
(4)重心:物體的各部分所受重力合力的作用點,物體的重心不壹定在物體上.
3.彈力 (1)產生原因:由於發生彈性形變的物體有恢復形變的趨勢而產生的.
(2)產生條件:①直接接觸;②有彈性形變.
(3)彈力的方向:與物體形變的方向相反,彈力的受力物體是引起形變的物體,施力物體是發生形變的物體.在點面接觸的情況下,垂直於面;
在兩個曲面接觸(相當於點接觸)的情況下,垂直於過接觸點的公切面.
①繩的拉力方向總是沿著繩且指向繩收縮的方向,且壹根輕繩上的張力大小處處相等.
②輕桿既可產生壓力,又可產生拉力,且方向不壹定沿桿.
(4)彈力的大小:壹般情況下應根據物體的運動狀態,利用平衡條件或牛頓定律來求解.彈簧彈力可由胡克定律來求解.
★胡克定律:在彈性限度內,彈簧彈力的大小和彈簧的形變量成正比,即F=kx.k為彈簧的勁度系數,它只與彈簧本身因素有關,單位是N/m.
4.摩擦力
(1)產生的條件:①相互接觸的物體間存在壓力;③接觸面不光滑;③接觸的物體之間有相對運動(滑動摩擦力)或相對運動的趨勢(靜摩擦力),這三點缺壹不可.
(2)摩擦力的方向:沿接觸面切線方向,與物體相對運動或相對運動趨勢的方向相反,與物體運動的方向可以相同也可以相反.
(3)判斷靜摩擦力方向的方法:
①假設法:首先假設兩物體接觸面光滑,這時若兩物體不發生相對運動,則說明它們原來沒有相對運動趨勢,也沒有靜摩擦力;若兩物體發生相對運動,則說明它們原來有相對運動趨勢,並且原來相對運動趨勢的方向跟假設接觸面光滑時相對運動的方向相同.然後根據靜摩擦力的方向跟物體相對運動趨勢的方向相反確定靜摩擦力方向.
②平衡法:根據二力平衡條件可以判斷靜摩擦力的方向.
(4)大小:先判明是何種摩擦力,然後再根據各自的規律去分析求解.
①滑動摩擦力大小:利用公式f=μF N 進行計算,其中FN 是物體的正壓力,不壹定等於物體的重力,甚至可能和重力無關.或者根據物體的運動狀態,利用平衡條件或牛頓定律來求解.
②靜摩擦力大小:靜摩擦力大小可在0與f max 之間變化,壹般應根據物體的運動狀態由平衡條件或牛頓定律來求解.
5.物體的受力分析
(1)確定所研究的物體,分析周圍物體對它產生的作用,不要分析該物體施於其他物體上的力,也不要把作用在其他物體上的力錯誤地認為通過“力的傳遞”作用在研究對象上.
(2)按“性質力”的順序分析.即按重力、彈力、摩擦力、其他力順序分析,不要把“效果力”與“性質力”混淆重復分析.
(3)如果有壹個力的方向難以確定,可用假設法分析.先假設此力不存在,想像所研究的物體會發生怎樣的運動,然後審查這個力應在什麽方向,對象才能滿足給定的運動狀態.
6.力的合成與分解
(1)合力與分力:如果壹個力作用在物體上,它產生的效果跟幾個力***同作用產生的效果相同,這個力就叫做那幾個力的合力,而那幾個力就叫做這個力的分力.(2)力合成與分解的根本方法:平行四邊形定則.
(3)力的合成:求幾個已知力的合力,叫做力的合成.
***點的兩個力(F 1 和F 2 )合力大小F的取值範圍為:|F 1 -F 2 |≤F≤F 1 +F 2 .
(4)力的分解:求壹個已知力的分力,叫做力的分解(力的分解與力的合成互為逆運算).
在實際問題中,通常將已知力按力產生的實際作用效果分解;為方便某些問題的研究,在很多問題中都采用正交分解法.
7.***點力的平衡
(1)***點力:作用在物體的同壹點,或作用線相交於壹點的幾個力.
(2)平衡狀態:物體保持勻速直線運動或靜止叫平衡狀態,是加速度等於零的狀態.
(3)★***點力作用下的物體的平衡條件:物體所受的合外力為零,即∑F=0,若采用正交分解法求解平衡問題,則平衡條件應為:∑Fx =0,∑Fy =0.
(4)解決平衡問題的常用方法:隔離法、整體法、圖解法、三角形相似法、正交分解法等等.
二、直線運動
1.機械運動:壹個物體相對於另壹個物體的位置的改變叫做機械運動,簡稱運動,它包括平動,轉動和振動等運動形式.為了研究物體的運動需要選定參照物(即假定為不動的物體),對同壹個物體的運動,所選擇的參照物不同,對它的運動的描述就會不同,通常以地球為參照物來研究物體的運動.
2.質點:用來代替物體的只有質量沒有形狀和大小的點,它是壹個理想化的物理模型.僅憑物體的大小不能做視為質點的依據。
3.位移和路程:位移描述物體位置的變化,是從物體運動的初位置指向末位置的有向線段,是矢量.路程是物體運動軌跡的長度,是標量.
路程和位移是完全不同的概念,僅就大小而言,壹般情況下位移的大小小於路程,只有在單方向的直線運動中,位移的大小才等於路程.
4.速度和速率
(1)速度:描述物體運動快慢的物理量.是矢量.
①平均速度:質點在某段時間內的位移與發生這段位移所用時間的比值叫做這段時間(或位移)的平均速度v,即v=s/t,平均速度是對變速運動的粗略描述.
②瞬時速度:運動物體在某壹時刻(或某壹位置)的速度,方向沿軌跡上質點所在點的切線方向指向前進的壹側.瞬時速度是對變速運動的精確描述.
(2)速率:①速率只有大小,沒有方向,是標量.
②平均速率:質點在某段時間內通過的路程和所用時間的比值叫做這段時間內的平均速率.在壹般變速運動中平均速度的大小不壹定等於平均速率,只有在單方向的直線運動,二者才相等.
5.加速度
(1)加速度是描述速度變化快慢的物理量,它是矢量.加速度又叫速度變化率.
(2)定義:在勻變速直線運動中,速度的變化Δv跟發生這個變化所用時間Δt的比值,叫做勻變速直線運動的加速度,用a表示.
(3)方向:與速度變化Δv的方向壹致.但不壹定與v的方向壹致.
[註意]加速度與速度無關.只要速度在變化,無論速度大小,都有加速度;只要速度不變化(勻速),無論速度多大,加速度總是零;只要速度變化快,無論速度是大、是小或是零,物體加速度就大.
6.勻速直線運動 (1)定義:在任意相等的時間內位移相等的直線運動叫做勻速直線運動.
(2)特點:a=0,v=恒量. (3)位移公式:S=vt.
7.勻變速直線運動 (1)定義:在任意相等的時間內速度的變化相等的直線運動叫勻變速直線運動.
(2)特點:a=恒量 (3)★公式: 速度公式:V=V0+at 位移公式:s=v0t+ at2
速度位移公式:vt2-v02=2as 平均速度V=
以上各式均為矢量式,應用時應規定正方向,然後把矢量化為代數量求解,通常選初速度方向為正方向,凡是跟正方向壹致的取“+”值,跟正方向相反的取“-”值.
8.重要結論
(1)勻變速直線運動的質點,在任意兩個連續相等的時間T內的位移差值是恒量,即
ΔS=Sn+l –Sn=aT2 =恒量
(2)勻變速直線運動的質點,在某段時間內的中間時刻的瞬時速度,等於這段時間內的平均速度,即:
9.自由落體運動
(1)條件:初速度為零,只受重力作用. (2)性質:是壹種初速為零的勻加速直線運動,a=g.
(3)公式:
10.運動圖像
(1)位移圖像(s-t圖像):①圖像上壹點切線的斜率表示該時刻所對應速度;
②圖像是直線表示物體做勻速直線運動,圖像是曲線則表示物體做變速運動;
③圖像與橫軸交叉,表示物體從參考點的壹邊運動到另壹邊.
(2)速度圖像(v-t圖像):①在速度圖像中,可以讀出物體在任何時刻的速度;
②在速度圖像中,物體在壹段時間內的位移大小等於物體的速度圖像與這段時間軸所圍面積的值.
③在速度圖像中,物體在任意時刻的加速度就是速度圖像上所對應的點的切線的斜率.
④圖線與橫軸交叉,表示物體運動的速度反向.
⑤圖線是直線表示物體做勻變速直線運動或勻速直線運動;圖線是曲線表示物體做變加速運動.
三、牛頓運動定律
★1.牛頓第壹定律:壹切物體總保持勻速直線運動狀態或靜止狀態,直到有外力迫使它改變這種運動狀態為止.
(1)運動是物體的壹種屬性,物體的運動不需要力來維持.
(2)定律說明了任何物體都有慣性.
(3)不受力的物體是不存在的.牛頓第壹定律不能用實驗直接驗證.但是建立在大量實驗現象的基礎之上,通過思維的邏輯推理而發現的.它告訴了人們研究物理問題的另壹種新方法:通過觀察大量的實驗現象,利用人的邏輯思維,從大量現象中尋找事物的規律.
(4)牛頓第壹定律是牛頓第二定律的基礎,不能簡單地認為它是牛頓第二定律不受外力時的特例,牛頓第壹定律定性地給出了力與運動的關系,牛頓第二定律定量地給出力與運動的關系.
2.慣性:物體保持勻速直線運動狀態或靜止狀態的性質.
(1)慣性是物體的固有屬性,即壹切物體都有慣性,與物體的受力情況及運動狀態無關.因此說,人們只能“利用”慣性而不能“克服”慣性.(2)質量是物體慣性大小的量度.
★★★★3.牛頓第二定律:物體的加速度跟所受的外力的合力成正比,跟物體的質量成反比,加速度的方向跟合外力的方向相同,表達式F 合 =ma
(1)牛頓第二定律定量揭示了力與運動的關系,即知道了力,可根據牛頓第二定律,分析出物體的運動規律;反過來,知道了運動,可根據牛頓第二定律研究其受力情況,為設計運動,控制運動提供了理論基礎.
(2)對牛頓第二定律的數學表達式F 合 =ma,F 合 是力,ma是力的作用效果,特別要註意不能把ma看作是力.
(3)牛頓第二定律揭示的是力的瞬間效果.即作用在物體上的力與它的效果是瞬時對應關系,力變加速度就變,力撤除加速度就為零,註意力的瞬間效果是加速度而不是速度.
(4)牛頓第二定律F 合 =ma,F合是矢量,ma也是矢量,且ma與F 合 的方向總是壹致的.F 合 可以進行合成與分解,ma也可以進行合成與分解.
4. ★牛頓第三定律:兩個物體之間的作用力與反作用力總是大小相等,方向相反,作用在同壹直線上.
(1)牛頓第三運動定律指出了兩物體之間的作用是相互的,因而力總是成對出現的,它們總是同時產生,同時消失.(2)作用力和反作用力總是同種性質的力.
(3)作用力和反作用力分別作用在兩個不同的物體上,各產生其效果,不可疊加.
5.牛頓運動定律的適用範圍:宏觀低速的物體和在慣性系中.
6.超重和失重
(1)超重:物體有向上的加速度稱物體處於超重.處於超重的物體對支持面的壓力F N (或對懸掛物的拉力)大於物體的重力mg,即F N =mg+ma.(2)失重:物體有向下的加速度稱物體處於失重.處於失重的物體對支持面的壓力FN(或對懸掛物的拉力)小於物體的重力mg.即FN=mg-ma.當a=g時F N =0,物體處於完全失重.(3)對超重和失重的理解應當註意的問題
①不管物體處於失重狀態還是超重狀態,物體本身的重力並沒有改變,只是物體對支持物的壓力(或對懸掛物的拉力)不等於物體本身的重力.②超重或失重現象與物體的速度無關,只決定於加速度的方向.“加速上升”和“減速下降”都是超重;“加速下降”和“減速上升”都是失重.
③在完全失重的狀態下,平常壹切由重力產生的物理現象都會完全消失,如單擺停擺、天平失效、浸在水中的物體不再受浮力、液體柱不再產生壓強等.
6、處理連接題問題----通常是用整體法求加速度,用隔離法求力。
四、曲線運動 萬有引力
1.曲線運動
(1)物體作曲線運動的條件:運動質點所受的合外力(或加速度)的方向跟它的速度方向不在同壹直線 (2)曲線運動的特點:質點在某壹點的速度方向,就是通過該點的曲線的切線方向.質點的速度方向時刻在改變,所以曲線運動壹定是變速運動.
(3)曲線運動的軌跡:做曲線運動的物體,其軌跡向合外力所指壹方彎曲,若已知物體的運動軌跡,可判斷出物體所受合外力的大致方向,如平拋運動的軌跡向下彎曲,圓周運動的軌跡總向圓心彎曲等.
2.運動的合成與分解
(1)合運動與分運動的關系:①等時性;②獨立性;③等效性.
(2)運動的合成與分解的法則:平行四邊形定則.
(3)分解原則:根據運動的實際效果分解,物體的實際運動為合運動.
3. ★★★平拋運動
(1)特點:①具有水平方向的初速度;②只受重力作用,是加速度為重力加速度g的勻變速曲線運動.
(2)運動規律:平拋運動可以分解為水平方向的勻速直線運動和豎直方向的自由落體運動.
①建立直角坐標系(壹般以拋出點為坐標原點O,以初速度vo方向為x軸正方向,豎直向下為y軸正方向);
②由兩個分運動規律來處理(如右圖).
4.圓周運動
(1)描述圓周運動的物理量
①線速度:描述質點做圓周運動的快慢,大小v=s/t(s是t時間內通過弧長),方向為質點在圓弧某點的線速度方向沿圓弧該點的切線方向
②角速度:描述質點繞圓心轉動的快慢,大小ω=φ/t(單位rad/s),φ是連接質點和圓心的半徑在t時間內轉過的角度.其方向在中學階段不研究.
③周期T,頻率f ---------做圓周運動的物體運動壹周所用的時間叫做周期.
做圓周運動的物體單位時間內沿圓周繞圓心轉過的圈數叫做頻率.
⑥向心力:總是指向圓心,產生向心加速度,向心力只改變線速度的方向,不改變速度的大小.大小 [註意]向心力是根據力的效果命名的.在分析做圓周運動的質點受力情況時,千萬不可在物體受力之外再添加壹個向心力.
(2)勻速圓周運動:線速度的大小恒定,角速度、周期和頻率都是恒定不變的,向心加速度和向心力的大小也都是恒定不變的,是速度大小不變而速度方向時刻在變的變速曲線運動.
(3)變速圓周運動:速度大小方向都發生變化,不僅存在著向心加速度(改變速度的方向),而且還存在著切向加速度(方向沿著軌道的切線方向,用來改變速度的大小).壹般而言,合加速度方向不指向圓心,合力不壹定等於向心力.合外力在指向圓心方向的分力充當向心力,產生向心加速度;合外力在切線方向的分力產生切向加速度. ①如右上圖情景中,小球恰能過最高點的條件是v≥v臨 v臨由重力提供向心力得v臨 ②如右下圖情景中,小球恰能過最高點的條件是v≥0。
5★.萬有引力定律
(1)萬有引力定律:宇宙間的壹切物體都是互相吸引的.兩個物體間的引力的大小,跟它們的質量的乘積成正比,跟它們的距離的平方成反比.
公式:
(2)★★★應用萬有引力定律分析天體的運動
①基本方法:把天體的運動看成是勻速圓周運動,其所需向心力由萬有引力提供.即 F引=F向得:
應用時可根據實際情況選用適當的公式進行分析或計算.②天體質量M、密度ρ的估算:
(3)三種宇宙速度
①第壹宇宙速度:v 1 =7.9km/s,它是衛星的最小發射速度,也是地球衛星的最大環繞速度.
②第二宇宙速度(脫離速度):v 2 =11.2km/s,使物體掙脫地球引力束縛的最小發射速度.
③第三宇宙速度(逃逸速度):v 3 =16.7km/s,使物體掙脫太陽引力束縛的最小發射速度.
(4)地球同步衛星
所謂地球同步衛星,是相對於地面靜止的,這種衛星位於赤道上方某壹高度的穩定軌道上,且繞地球運動的周期等於地球的自轉周期,即T=24h=86400s,離地面高度 同步衛星的軌道壹定在赤道平面內,並且只有壹條.所有同步衛星都在這條軌道上,以大小相同的線速度,角速度和周期運行著.
(5)衛星的超重和失重
“超重”是衛星進入軌道的加速上升過程和回收時的減速下降過程,此情景與“升降機”中物體超重相同.“失重”是衛星進入軌道後正常運轉時,衛星上的物體完全“失重”(因為重力提供向心力),此時,在衛星上的儀器,凡是制造原理與重力有關的均不能正常使用.
五、動量
1.動量和沖量
(1)動量:運動物體的質量和速度的乘積叫做動量,即p=mv.是矢量,方向與v的方向相同.兩個動量相同必須是大小相等,方向壹致.
(2)沖量:力和力的作用時間的乘積叫做該力的沖量,即I=Ft.沖量也是矢量,它的方向由力的方向決定.
2. ★★動量定理:物體所受合外力的沖量等於它的動量的變化.表達式:Ft=p′-p 或 Ft=mv′-mv
(1)上述公式是壹矢量式,運用它分析問題時要特別註意沖量、動量及動量變化量的方向.
(2)公式中的F是研究對象所受的包括重力在內的所有外力的合力.
(3)動量定理的研究對象可以是單個物體,也可以是物體系統.對物體系統,只需分析系統受的外力,不必考慮系統內力.系統內力的作用不改變整個系統的總動量.
(4)動量定理不僅適用於恒定的力,也適用於隨時間變化的力.對於變力,動量定理中的力F應當理解為變力在作用時間內的平均值.
★★★ 3.動量守恒定律:壹個系統不受外力或者所受外力之和為零,這個系統的總動量保持不變.
表達式:m 1 v 1 +m 2 v 2 =m 1 v 1 ′+m 2 v 2 ′
(1)動量守恒定律成立的條件
①系統不受外力或系統所受外力的合力為零.
②系統所受的外力的合力雖不為零,但系統外力比內力小得多,如碰撞問題中的摩擦力,爆炸過程中的重力等外力比起相互作用的內力來小得多,可以忽略不計.
③系統所受外力的合力雖不為零,但在某個方向上的分量為零,則在該方向上系統的總動量的分量保持不變.
(2)動量守恒的速度具有“四性”:①矢量性;②瞬時性;③相對性;④普適性.
4.爆炸與碰撞
(1)爆炸、碰撞類問題的***同特點是物體間的相互作用突然發生,作用時間很短,作用力很大,且遠大於系統受的外力,故可用動量守恒定律來處理.
(2)在爆炸過程中,有其他形式的能轉化為動能,系統的動能爆炸後會增加,在碰撞過程中,系統的總動能不可能增加,壹般有所減少而轉化為內能.
(3)由於爆炸、碰撞類問題作用時間很短,作用過程中物體的位移很小,壹般可忽略不計,可以把作用過程作為壹個理想化過程簡化處理.即作用後還從作用前瞬間的位置以新的動量開始運動.