什麽是有機合成化學?
從1853 年貝特羅首次用甘油和脂肪酸合成了天然脂肪(硬脂)的類似物開始,到現在有機合成化學的歷史已經有150多年,其發展在當代達到了空前的水平。每約20年,就有新的進展把這壹領域推到壹個新的水平。在1940 年左右,有機化學的合成活動大多還是按照20世紀初流行方式進行,其主要差別只是研究者的人數大大增加了,合成方法的樣式多了,儀器設備得到了改進。解決合成問題主要是以經驗為依據,並且目標十分有限,想要進行大步驟合成的人極為罕見。由於需要熟悉大量的特殊化合物和特殊反應,有機化學家們傾向於從事糖化學、生物堿、染料、萜烯、蛋白質、脂肪、甾族化合物或某壹類似領域的研究,而極少對整個化學領域感興趣。
自 1940 年以後,理論原則開始被用來規劃合成問題,儀器被用來控制反應歷程中的各步反應,這已使合成有機化學的狀況發生了巨大變化。有關天然產物的化學在推動這壹變化方面起了極為重要的作用。生物化學家們對維生素和酶發生了興趣,藥物工業對抗生素、激素和蘿芙藤生物堿等壹些天然物質發生了興趣,這些都刺激了對具有多個反應中心的復雜分子的合成的研究。
有機合成化學的發展,經歷了以下幾個時期:
早期
像武茲反應、威廉遜反應、帕金反應、羅森反應、霍夫曼反應、斯克勞普反應、弗瑞蘭德反應、雅各布森反應、諾爾反應、米切爾反應那樣,壹些完全確立的“人名”反應繼續被廣泛地使用著的同時,人們不斷提出擴大它們的應用的改進方法。由於新反應的發現使得過去的目的更易於達到,使得新的合成能著手進行,格林亞試劑是1899年被提出的,但直到20世紀它才得到了充分重視。格林亞本人將這個反應擴大到各種化合物的制備方面,而無機化學家們也利用了這個反應。
因為格林亞試劑易與含有可取代的氫或活潑氫的物質反應,比如水、醇、氨、HCl,所以它在分析上被用來測定這種可取代的氫。這壹應用是首先由聖彼得堡的 L.丘加也夫(1872—1922年)提出的,後來他的學生采列維季諾夫進壹步發展了它。
20世紀初采用的其他反應有布沃爾特的醛合成、布沙爾的酸變胺的反應、烏爾曼的用銅將芳香鹵化物轉變成烴的反應以及烏爾曼的將簡單環連接成更復雜的稠合環的縮合反應。所有這些反應都可用於芳香族化合物,而這些反應反映了人們在20世紀頭十年裏對染料化學的密切註意。同壹時期出現的布沃爾特—勃蘭克還原提供了壹種將酸轉變成相應的醇的方法。這壹還原反應是鈉和乙醇在該酸的酯存在下發生的還原反應。克萊門生反應則通過使用在酸中的鋅汞齊將羰基轉變成亞甲基。達金反應使用了堿液中的過氧化氫,從而將芳香醛轉變成了酚。
第壹次世界大戰期間,除了羅森蒙德還原反應外,合成化學領域沒有出現什麽新活動。在這壹還原反應中,酰基是通過將氫引入壹個含鈀催化劑的溶液裏而轉變成醛基的。將有機酸鏈長縮短壹個單位的巴比埃—維蘭德降解反應是1913年由巴比埃提出,並在1926 年由維蘭德加以改進。另壹個意義重大的反應是 1928 年,由O.迪爾斯(1876—1934年)和 K.奧爾德(1902—1958年)在基爾發現的。他們觀察到,丁烯與馬來酸酐劇烈反應,可以定量地得到壹種六元環化合物順-△4-四氫化酞酸酐。
在較早的時候,梅爾魏因是梅爾魏因—龐道爾夫—維爾利還原反應的獨立發現者之壹,該反應是在烷醇鋁存在條件下將羰基化合物還原成醇的反應。這種氧化反應最適合將仲醇轉變成酮,盡管它多少也被用在伯醇的氧化上。
催化加氫對合成工作及對解釋理論問題都是壹門有用的技術。20世紀初,薩巴蒂埃和森德倫斯最早發展了它,不久它就被工業生產上所采用。直到第壹次世界大戰結束前,需要提供適當高壓的要求推遲了氫化技術在有機研究中的廣泛應用。到20世紀30年代,它才被應用於許多重要工作。
氫化反應所用的適宜催化劑的發展也很緩慢。帕爾在20世紀初提出了壹種制備鉑催化劑的方法。其他細粹金屬,特別是鎳,也被利用上了。不過制備催化劑的方法卻沒有標準化,故而其結果使人失望。1927 年 M.拉尼獲得專利的壹種鎳-鋁合金被廣泛用來制備鎳催化劑,其中鋁是用氫氧化鈉將其溶解後分離出去的。伊利諾斯的亞當斯及其同事將金屬氧化物還原,以用作催化劑。威斯康星的 H.阿德金斯(1892—1949年)及其同事最先將亞鉻酸銅研制成壹種有效的催化劑。
中期
有機合成的現代時期開始於20世紀40年代。盡管之前的十年已經完成了某些困難的合成,比如,R.R.威廉斯和 J.K.克萊因完成的硫胺合成;P.卡勒爾和 R.庫恩各自獨立完成的核黃素合成;S.A.哈裏斯和 K.福克斯以及庫恩獨立完成的吡哆醇合成;T.賴希斯坦和庫恩各自獨立完成的抗壞血酸合成;三個實驗室——卡勒爾實驗室、A.托德實驗室和L.I.史密斯實驗室完成的α-生育酚合成;E.A.多伊西實驗室和 L.菲塞爾實驗室完成的止血維生素 K 合成;W.巴赫曼、J.W.科爾和 A.L.維爾茲完成的馬萘雌酮合成;福克斯及庫恩和 H.維蘭德完成的泛酸合成,但這些合成與下面的全合成相比,就有些失色了。
這些全合成有R.B.伍德沃德和 W.E.多林成功進行的奎寧的全合成,L.H.薩雷特的可的松合成,伍德沃德的棒曲黴素和馬錢子堿合成,M.蓋茨和 D.金斯貝格的嗎啡合成,福克斯、A.格雷斯納爾和蘇巴羅夫在默克實驗室進行的維生素 H 合成,C.W.沃勒的葉酸合成,伍德沃德和 R.魯賓遜獨立完成的膽固醇和維生素 合成,H.英霍芬和卡勒爾的β?胡蘿蔔素合成,O.艾斯勒的維生素 A 合成,F.桑格的胰島素合成,以及伍德沃德和馬丁·斯特雷爾的葉綠素α合成。
這些合成的顯著特點就是它們能在這些化合物的結構確立後不久就迅速完成。這些合成顯示了新的觀點在有機化學領域所具有的力量。因為在做實驗以前,常常要對各步反應進行理論上的設計。這些合成成就反映了20世紀中葉科學的特點——大大依賴於思想觀點的交流。狹隘研究專業的時代已經讓位於綜合研究問題的時代。
壹項既在有機研究中,也在工業生產上具有價值的特別重要的合成發展就是對微生物的利用。黴菌和其他生物體被廣泛地用來生產抗生素。微生物產生了抗生素,但是關於其中間過程人們卻不太了解。然而,微生物已被用於進行壹系列合成操作平菇綠黴菌中的某壹步反應。它們特別適合於這種應用,因為它們可以進行立體有擇反應,若以純化學合成來反應,則會產生異構體的混合物。維生素C、1?麻黃堿、吡哆醛、吡哆胺、某些蒽醌和某些青黴素已可用適當的微生物來合成了,這種方法在甾族化合物領域中也已被采用了。
近期
具有高水平的有機合成研究小組的數目,和他們所取得的重大發現成果,以及該領域對年輕有為科學家的吸引力,遠遠超過了20世紀60年代。化學合成方法學包括壹些新的合成過程、重大合成戰略和有較高選擇性的試劑、催化劑。親和層析和多功能液相色譜等對有機物質分離和純化方法的改進,這將大大加速有機合成研究,從而可能解決許多更復雜的問題。
物理儀器(X 線晶體衍射、核磁***振、質譜)和計算機等在精確測定結構中的應用,大大加快了新的人工合成的生物活性分子的發現和鑒定,促進了我們對生物活性分子功能的認識。這表明計算機已成為有機合成化學家的重要工具。計算機將不僅僅用於計算,還將用於多種問題的解決和相互教授。用計算機輔助模型對合成進行分析,將成為化學的常規工具。